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In the framework of the Comprehensive Test Ban Treaty, development of reliable
methods to discriminate between underground nuclear explosions and earthquakes
at regional distances (less than 2500km) continues to be very important especially
in connection with the last (in May, 1998) nuclear explosions conducted at Indian
and Pakistan test sites. Since the lithosphere is a fractal, we suppose the signals,
which propagate through the media, inherit its 'self-similar' (scaling) features. We
assumed that these features of explosions and earthquakes or their topological
reconstructions (embeddings) have to be different. Scaling reflects correlations of
more high order then it is possible to estimate by linear discriminating methods and
can be used as base of non-linear discrimination. We propose to build a universal
geometrical model of a seismic signal using the canon algorithm of F. Takens and
to estimate scaling of the model. The scaling features were used as patterns of
seismic signals for entering them into an artificial neural network. Records of
nuclear explosions and earthquakes from different regions were included into the
training set. The net was trained to classify types of seismic events. Results
have shown 89% correct classification of the unknown signals. As additional tools
for distinguishing between nuclear explosions and earthquakes we propose to use
Hurst's method and the cross correlation method. Results of using these methods
are demonstrated on examples of some explosions and earthquakes.

1 Introduction

The nuclear explosion discrimination problem continues to be very important espe-
cially in connection with the last ( in May, 1998) nuclear explosions conducted at
Indian and Pakistan test sites. Existing regional methods of seismic event discrim-
ination 1,2,3,4,5 are based on the comparative analysis of spectral characteristics of
two main components (P-wave and S-wave) of a seismogram (see Fig. 1). How-
ever, these parameters are very sensitive to non-uniformity of the lithosphere and
the astenosphere and depend on the location of the event and the path of a signal
propagation. Moreover, modern technology of nuclear testing complicates distin-
guishing between nuclear explosions and earthquakes.

It is known that the lithosphere exibites fractal features 6,7 in a wide range of
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Figure 1. A seismogram of the Chinese earthquake, 24.07.86

scales - from parts of millimetre of geological grain to tens thousands kilometres
of a tectonic plateau and has hierarchy of self-similar blocks. Response of the
fractal lithosphere depends on source's geometry (radiation patterns) of a seismic
event more than on its yields. Moreover, an earthquake centre is formed in the
media during the long time. Features of the media are changed by the moment of
the earthquake, which occurs in the preliminary stressed media. An explosion is an
artifact for the media and is not connected with any preliminary changes of external
parameters of the media. Since dynamic scenarios of explosions and earthquakes
are different, we assumed that scaling features of seismic signals or their topological
reconstructions (embeddings) have to be different. Scaling reflects correlations of
higher order than it is possible to estimate by linear discriminating methods, and
can be used as base of non-linear discrimination. We propose to build a universal
geometrical model of a seismic signal using the canon Takens' algorithm 8,9 and to
use its scaling features as attributes of seismic event discrimination.

The structure of this paper is as follows. In Sec. 2 we study ID scaling features
of seismograms. In Sec. 3 we study correlation dimension of reconstructions of
explosions and earthquakes. In Sec. 4 we use the scaling features of embeddings
of seismic signals as patterns for a neural network. In Sec. 5 we describe the
cross correlation method as a tool for seismic discrimination. Our findings are
summarized in the conclusion section.
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2 Hurst's exponents of seismograms

We started from the study of self-similar properties of the processes in seismic
sources applying Hurst's method 10 to the seismograms of nuclear explosions and
earthquakes. Let us remind the classical notion of self-similarity for a random
process". X(t) is a self-similar process in R if there exists a sequence of positive
real numbers c, such that, for any r > 0,

X(t) - crX(rt), t E (1)

where - denotes equality of all finite-dimensional distribution. This equation is
a statement of invariance of X(t) under the group of affine transformations X --*
cX, t --* rt, Cr > 0. Since Ca,b = CaCb and cl = 1, cr must have the form rH for
some H > 0 and this formula might be modified as

X(t) = r-HX(rt),t E R (2)

where H is the Hurst exponent. Traditionally it is estimated by the rescaled range
method 10

We analyzed seismograms of the nuclear explosions conducted in India and Pak-
istan and Tibetian earthquakes. Fig. 2 represents the Hurst's exponents for different
types of seismic events. Analysis of the Hurst's exponents allowed to conclude that
graphs of the earthquakes are more regular than graphs of the explosions because
H estimated for earthquakes equals 1 on larger range of scales (i.e. logT C [0, 1.5])
than for explosions (i.e. logT c [0, 1]).

It is necessary to note that the procedure described above is suitable only for
records with low level of noise.

3 Correlation integral as a tool for distinguishing between different
seismic sources

The estimation of the correlation dimension 12 of attractors reconstructed directly
from experimental time series is often used means of gaining information about
the nature of the underlying dynamics. It is proposed that a scalar time series
y(t) = {y},i = 1, 2, ... , N have been generated by a smooth dynamical system
x(t + T) = fr(x(t)) defined on a manifold M with an attractor A E M such that
yj = h(x(iT)) where h : M --+ R is Lipschiz function. Then the reconstruction

y(i) = {YiYi+1, ... ,Yi+--1} =(

{h(x(t)), h(x(t - T-)), h(x(t - 2T)), ... , h(x(t - (m - 1)T))}

defines a delay-coordinate map A : M -- Rm and A -4 AR is the reconstructed
attractor. Takens' theorem 8,9 ensures that if m > 2D where D is the box-counting
dimension (or capacity) of A, then the map A is embedding, i.e. is one-to-one, and
also an immersion with a precision upto assumption about prevalence 13

For Takens' theorem to be valid, we need to assume that both the dynamics and
the observations are autonomous (so that f and h depend on x only). Unfortunately,
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Figure 2. Hurst exponent H curves for different seismic events: Pakl - nuclear explosion 30.05.98
(Pakistan), ind - nuclear explosion 11.05.98 (India), tibl - earthquake (Tibet), tib2 - earthquake
(Tibet), tib3 - earthquake (Tibet)

these assumptions fail to hold for seismic sources. However, there exists Takens
embedding theorem for forced and stochastic systems 14. We applied the technique
of reconstruction described above basing on the last theorem and assuming that
the seismograms are typical and contain all the character scales of the dynamics of
the seismic sources. It means that in some sense the attractor of the seismic source
exists.

We reconstructed some old non-camouflaged nuclear explosions and found out
that their embeddings in R' visually differ from ones of earthquakes (see Figures 3-
4). Unfortunately, this difference for records of last explosions (Indian and Pakistani
explosions) is not visible (see, for example, Fig. 5). Therefore, it is reasonable to
use numerous characteristics of these reconstructions. The most popular tool for
description of the embedding obtained is the correlation integral 12

Let y(i) G Rm be a point on the attractor AR. The correlation integral is
defined as proportion of pairs of points of no more than distance E apart. That is,

Cm(E) = N(2 1 E Ee(11y(j) - y(k)lI -E) (4)
a k

Here: E - Heaviside step function, the symbol * always denotes 'sup' norm
on R'.

There is scaling:

C.(E) Oc E, (5)
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Figure 3. Embedding in 1R2 , nuclear explosion, Figure 4. Embedding in RJ2, earthquake,
STS, 25.04.82. China, 24.06.86.
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Figure 5. Embedding in 12, the Indian nuclear explosion, recorded by NIL station, 30.05.98.

for E ---- 0. The slope of the correlation integral is called correlation dimension

I/= li A log C(E) (6)E 2 A log E

The estimated v' typically increases with m and reaches a plateau (in the best case),
on which the vi estimate becomes relative constant.

It is expected that because of the spherical symmetry and small sizes of sources
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of underground explosions the main part of seismic energy is contained in compres-
sional P-waves having high frequency content in comparison with earthquakes. At
the same time earthquakes differ by generating intensive shear S-waves. These dif-
ferences are traditionally used for choosing diagnostic parameters for seismic event
discrimination. Hence, we studied the signals for both types of waves separately.

We processed records of underground nuclear explosions conducted at Semi-
palatinsk Test Site (STS,Kazakhstan) and Lop Nor (China) and earthquakes in
China and Altay (Russia). The seismograms were recorded by Kazakhstani seis-
mic stations BRVK, VOS, ZRN, CHK located in the North-West and TLG - in
the South of Kazakhstan. In addition, seimograms of NIL station (Pakistan) were
processed.

Our experience showed that correlation integrals for P-wave reconstructions
are more informative than ones for S-waves: analyzing correlation integrals for S-
waves we didn't find out notable features discriminating different seismic sources.
Fig. 7 shows the typical correlation integrals for P-waves of nuclear explosions and
earthquakes. It is seen that the correlation dimensions calculated for different types
of seismic events are different. As a rule, the correlation dimensions are higher for
explosions than for earthquakes.

101
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Figure 6. Slopes of correlation integrals (rn= Figure 7. Slopes of correlation integrals (m =

8 - 16, T- 2), P-wave of the nuclear explosion, 7 - 14, T- = 2), P-wave of the Chinese earth-
Sernipalatinsk Test Site, 25.04.82. quake, 24.07.86.

In general case the slopes exibit complex behavior of i, versus E Fig. 8. For
complex systems it is possible that more than one scaling exists for different a.
The complexity of seismic record slopes might be explained by presence of different
kinds folding effects in NJ'• 17. For the reasons outlined above we used the slope's
form instead of the value of the correlation dimension, i.e. the function v = v/(log a).

We used this function, as discriminating attribute of seismic signals for training
an artificial neural network to classify seismic sources.
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Figure 8. Slopes of correlation integrals (m = 10 - 25, - = 2), P-wave of the Indian nuclear
explosion recorded by NIL station 30.05.98.

4 Neural network using

In the last decade artificial neural networks (ANN) have become the most popular
tool for pattern recognition tasks 19,20 in general, and in seismic sources distin-
guishing in particular 3 One can consider a neural network as a distributed
dynamical system consisting of a set of non-linear processing elements (formal neu-
rons) connected according to a certain architecture. The formal neuron is able to
pick up input vectors x = {xj}, j = 1, 2, ... , N, estimate their scalar multiplications
with weights w = {wi}, i = 1, 2,..., M:

S = Exjwi (7)
ij

and transform S in accordance with an activation function ¢ into the output vec-
tor of the neuron y = p(S). Such a neural network might be trained to recognize
unknown patterns. Network training process is based on adjusting the weight con-
nections between related values of inputs and targets (desirable outputs) so as to
minimize an error function 19. A set of input-targets values is called a training one.
There exist two main types of ANN: fully-connected nets and perceptrons 20.

In order to check the algorithm described in the previous section we trained
the fully-connected artificial neural network "MultiNeuron" developed by Russian

scientists 20 using 60 examples of the correlation integral slopes of seismic records
mentioned above as input patterns. The net was tested on 10 seismograms of
different underground nuclear explosions and earthquakes which were not included
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into the training set. Results of testing showed 89% of the correct classification of
the signals.

5 Cross-correlation sums as a tool for distinguishing between
different seismic sources

In this section we represent results of our study of non-linear cross correlation sums,
which are the generalized correlation integrals and are used here for estimating
similarity of two probabilistic measures.

Let {y2}, {zj}, i = 1, 2, ... , N denote two different observed time series. Internal
dynamics of systems in a phase space M which produces these series as typical
mapping M -4 W is unknown. However, it is proposed that there exist chaotic or
quasiperiodic attractors of these systems, dimensions of which dy and d. are low
enough for applying the reconstruction's methods.

Let Ay and A' be their embeddings into , n> 2(dy + dz). Let y and z be

corresponding delay-vectors selected randomly according to two different measures
IL and p. The cross correlation integrals are defined by" :

S= f djL(y) J dp(z)E(E - IlY - zl1) (8)

The cross correlation sum is defined similarly by

Cy,(E) = N 2 Z• e(E-Ily-zIJ) (9)
y z

Almost surely, Cyz(E) -4 Cp(E) for N -4 oo, and Cyz(E) is an unbiased estima-
tor of C,,p(E). For sufficiently small E and for absolutely continues measures /I and
p one can show 15

,~P(E) <ý Cj,(E)Cpp(E) (10)

In practice, this inequality is used to calculate the cross correlation ratio as a
similarity measure

(c) cy(11)

We used it in the form 16

K (E) =1(i)_-_(J)1 2 (e -1 ly(i) - Y(J) 11) (12)K> i=j O(E - I1y(i) - y(IJ
If {yj } and {zi } are related by identical dynamical scenarios than one can expect

that Ily(i) - y(J)j < - => IIz(i) -z(j)jj zE. If no, IIz(i) - z(j)i I Az, where Az is
the average distance between points of the attractor Az and Kymz does not depend
on E.

Fig. 9 represents the cross corelations of various seismic events. The cross corre-
lation between the Tibetian earthquake (09.01.90) and the Indian nuclear explosion
(11.05.98) is absent: Ky,(E) curve is practically in parallel with the horizontal axis.
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Figure 9. Cross correlation between recon- Figure 10. Cross correlation between recon-
structions of the Tibetan earthquake and the structions of the Indian and the Pakistani nu-
Indian nuclear explosion, clear explosions.

The Figure 10 demonstrates strong cross correlation between the Indian explo-
sion (11.05.98) and the Pakistani nuclear explosion (28.05.98). In this case we can
conclude that dynamical scenarios of two systems observed are identical ones.

6 Conclusion

We have introduced non-linear criteria for distinguishing between underground nu-
clear explosions and earthquakes recorded at regional distances using the fractal
approach.

We noted that behavior of Hurt's exponents varies for graphs of different seis-
mograms in dependence on scale: the regularity range for the earthquakes is larger
than for the explosions.

We found out that embeddings of non-camouflaged explosions into R2 visually
differ from ones of earthquakes. The slopes of correlation integrals demonstrate
complexity of scaling. The notable plateau is absent for both types of seismic
sources but the curves of the slopes are different for explosions and earthquakes.

The correlation dimension curves of 60 seismograms of different seismic events
were entered into the neuroimitator "MultiNeuron", which was used as a classi-
ficator of underground nuclear explosions and earthquakes. The testing results
obtained have shown 89% correct classification of 10 seismic events, which were not
included into the training set.

Sometimes, it is possible to identify the seismic source estimating its cross cor-
relation with a test example. Analysis of relationships of attractors in the phase
space allows obtaining additional information for the discrimination task.

Therefore, our experience has shown that the non-linear methods could be suc-
cessfully applied to regional seismic event discrimination.
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